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• Cluster analysis groups data objects based only on 
the attributes in the data. 

• The main objective is that 
 The objects within a group be similar to one another and 
 They are different from the objects in the other groups. 

Cluster analysis 



• Cluster analysis is important in the following areas: 
 Biology 
 Information retrieval 
 Medicine 
 Business 

Cluster analysis 



• Cluster analysis provides an abstraction from 
individual data objects to the clusters in which those 
data objects reside. 

• Some clustering techniques characterize each cluster 
in terms of a cluster prototype. 

• The prototype is a data object that is representative 
of the other objects in the cluster. 

Cluster analysis 



• We consider the following types of clusterings 
 Partitional versus hierarchical 
 Exclusive versus fuzzy 
 Complete versus partial 

Different types of clusterings 



• A partitional clustering is a division of the set of data 
objects into subsets (clusters). 

• A hierarchical clustering is a set of nested clusters 
that are organized as a tree. 

• Each node (cluster) in the tree (except for the leaf 
nodes) is the union of its children (sub-clusters). 

• The root of the tree is the cluster containing all the 
objects. 

• Often, but not always, the leaves of the tree are 
singleton clusters of individual data objects. 

Partitional versus hierarchical 



• The following figures form a hierarchical (nested) 
clustering with 1, 2, 4 and 6 clusters on each level. 

• A hierarchical clustering can be viewed as a sequence 
of partitional clusterings. 

• A partitional clustering can be obtained by taking any 
member of that sequence, i.e. by cutting the 
hierarchical tree at a certain level. 

Partitional versus hierarchical 



 

Partitional versus hierarchical 



• In an exclusive clustering, each object is assigned to a 
single cluster. 

• However, there are many situations in which a point 
could reasonably be placed in more than one cluster. 

Exclusive versus fuzzy 



• In a fuzzy clustering, every object belongs to every 
cluster with a membership weight that is between 
 0 (absolutely does not belong) and 
 1 (absolutely belongs). 

• This approach is useful for avoiding the arbitrariness 
of assigning an object to only one cluster when it is 
close to several. 

• A fuzzy clustering can be converted to an exclusive 
clustering by assigning each object to the cluster in 
which its membership value is the highest. 

Exclusive versus fuzzy 



• A complete clustering assigns every object to a 
cluster. 

• A partial clustering does not assign every object to a 
cluster. 

• The motivation of partial clustering is that some 
objects in a data set may not belong to well-defined 
groups. 

• Instead, they may represent noise or outliers. 

Complete versus partial 



• K-means is a prototype-based clustering technique 
which creates a one-level partitioning of the data 
objects. 

• Specifically, K-means defines a prototype in terms of 
the centroid of a group of points. 

• K-means is typically applied to objects in a 
continuous n-dimensional space. 

K-means 



• The basic K-means algorithm is summarized below 
 1. Select K points as initial centroids 
 2. Repeat 

a. Form K clusters by assigning each point to 
its closest centroid. 

b. Recompute the centroid of each cluster. 
 3. Until centroids do not change. 

K-means 



• We first choose K initial centroids, where K is a user- 
defined parameter, namely, the number of clusters 
desired. 

• Each point is then assigned to the closest centroid. 
• Each collection of points assigned to a centroid is a 

cluster. 
• The centroid of each cluster is then updated based 

on the points assigned to the cluster. 
• We repeat the assignment and update steps until the 

centroids remain the same. 

K-means 



• These steps are illustrated in the following figures. 
• Starting from three centroids, the final clusters are 

found in four assignment-update steps. 

K-means 



 

K-means 



• Each sub-figure shows 
 The centroids at the start of the iteration and 
 The assignment of the points to those centroids. 

• The centroids are indicated by the “+” symbol. 
• All points belonging to the same cluster have the 

same marker shape. 

K-means 



• In the first step, points are assigned to the initial 
centroids, which are all in the largest group of points. 

• After points are assigned to a centroid, the centroid 
is then updated. 

• In the second step 
 Points are assigned to the updated centroids and 
 The centroids are updated again. 

K-means 



• We can observe that two of the centroids move to 
the two small groups of points at the bottom of the 
figures. 

• When the K-means algorithm terminates, the 
centroids have identified the natural groupings of 
points. 

K-means 



• To assign a point to the closest centroid, we need a 
proximity measure that quantifies the notion of 
“closest”. 

• Euclidean (L2) distance is often used for data point in 
Euclidean space. 

Proximity measure 



• The goal of the clustering is typically expressed by an 
objective function. 

• Consider data whose proximity measure is Euclidean 
distance. 

• For our objective function, which measures the 
quality of a clustering, we can use the sum of the 
squared error (SSE). 

Proximity measure 



• We calculate the Euclidean distance of each data 
point to its closest centroid. 

• We then compute the total sum of the squared 
distances, which is also known as the sum of the 
squared error (SSE). 

• A small value of SSE means that the prototypes 
(centroids) of this clustering are a better 
representation of the points in their cluster. 

Proximity measure 



Proximity measure 

• The SSE is defined as follows: 
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• In this equation 
 x is a data object. 
 Ci is the i-th cluster. 
 ci is the centroid of cluster Ci. 
 d is the Euclidean (L2) distance between two objects in 

Euclidean space. 



Proximity measure 

• It can be shown that the mean of the data points in 
the cluster minimizes the SSE of the cluster. 

• The centroid (mean) of the i-th cluster is defined as  
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• In this equation, mi is the number of objects in the i-
th cluster 



• Steps 2a and 2b of the K-means algorithm attempt to 
minimize the SSE. 

• Step 2a forms clusters by assigning points to their 
nearest centroid, which minimizes the SSE for the 
given set of centroids. 

• Step 2b recomputes the centroids so as to further 
minimize the SSE. 

Proximity measure 



• Choosing the proper initial centroids is the key step 
of the basic K-means procedure. 

• A common approach is to choose the initial centroids 
randomly. 

• Randomly selected initial centroids may be poor 
choices. 

• This is illustrated in the following figures. 

Choosing initial centroids 



 

Choosing initial centroids 



• One technique that is commonly used to address the 
problem of choosing initial centroids is to perform 
multiple runs. 

• Each run uses a different set of randomly chosen 
initial centroids. 

• We then choose the set of clusters with the 
minimum SSE. 

Choosing initial centroids 



• When the Euclidean distance is used, outliers can 
influence the clusters that are found. 

• When outliers are present, the resulting cluster 
centroids may not be as representative as they 
otherwise would be. 

• The SSE will be higher as well. 
• Because of this, it is often useful to discover outliers 

and eliminate them beforehand. 

Outliers 



• To identify the outliers, we can keep track of the 
contribution of each point to the SSE. 

• We then eliminate those points with unusually high 
contributions to the SSE. 

• We may also want to eliminate small clusters, since 
they frequently represent groups of outliers. 

Outliers 



• Two post-processing strategies that decrease the SSE 
by increasing the number of clusters are 
 Split a cluster 

 The cluster with the largest SSE is usually chosen. 

 Introduce a new cluster centroid 
 Often the point that is farthest from its associated cluster center is 

chosen. 

 We can determine this if we keep track of the contribution 
of each point to the SSE. 

Post-processing 



• Two post-processing strategies that decrease the 
number of clusters, while trying to minimize the 
increase in total SSE, are 
 Disperse a cluster 

 This is accomplished by removing the centroid that corresponds to 
the cluster. 

 The points in that cluster are then re-assigned to other clusters. 
 The cluster that is dispersed should be the one that increases the 

total SSE the least. 

 Merge two clusters 
 We can merge the two clusters that result in the smallest increase 

in total SSE. 

Post-processing 



• Bisecting K-means algorithm is an extension of the 
basic K-means algorithm. 

• The main steps of the algorithm are described as 
follows 
 To obtain K clusters, split the set of all points into two 

clusters. 
 Select one of these clusters to split. 
 Continue the process until K clusters have been produced. 

 
 

Bisecting K-means 



• There are a number of different ways to choose which 
cluster to split. 
 We can choose the largest cluster at each step. 
 We can also choose the one with the largest SSE. 
 We can also use a criterion based on both size and SSE. 

• Different choices result in different clusters. 
• We often refine the resulting clusters by using their 

centroids as the initial centroids for the basic K-means 
algorithm. 

• The bisecting K-means algorithm is illustrated in the 
following figure. 
 

Bisecting K-means 



 

Bisecting K-means 



• K-means and its variations have a number of 
limitations with respect to finding different types of 
clusters. 

• In particular, K-means has difficulty detecting clusters 
with non-spherical shapes or widely different sizes or 
densities. 

• This is because K-means is designed to look for 
globular clusters of similar sizes and densities, or 
clusters that are well separated. 

• This is illustrated in the following examples. 

Limitations of K-means 



• In this example, K-means cannot find the three natural 
clusters because one of the clusters is much larger than 
the other two. 

• As a result, the largest cluster is divided into sub- 
clusters. 

• At the same time, one of the smaller clusters is combined 
with a portion of the largest cluster. 

Limitations of K-means 



• In this example, K-means fails to find the three 
natural clusters. 

• This is because the two smaller clusters are much 
denser than the largest cluster. 

Limitations of K-means 



• In this example, K-means finds two clusters that mix 
portions of the two natural clusters. 

• This is because the shape of the natural clusters is 
not globular. 

Limitations of K-means 



• A hierarchical clustering is a set of nested clusters 
that are organized as a tree. 

• There are two basic approaches for generating a 
hierarchical clustering 
 Agglomerative 
 Divisive 

Hierarchical clustering 



• In agglomerative hierarchical clustering, we start 
with the points as individual clusters. 

• At each step, we merge the closest pair of clusters. 
• This requires defining a notion of cluster proximity. 

Hierarchical clustering 



• In divisive hierarchical clustering, we start with one, 
all-inclusive cluster. 

• At each step, we split a cluster. 
• This process continues until only singleton clusters of 

individual points remain. 
• In this case, we need to decide 
• Which cluster to split at each step and 
• How to do the splitting. 

Hierarchical clustering 



• A hierarchical clustering is often displayed graphically 
using a tree-like diagram called the dendrogram. 

• The dendrogram displays both 
 the cluster-subcluster relationships and 
 the order in which the clusters are merged (agglomerative) 

or split (divisive). 

• For sets of 2-D points, a hierarchical clustering can 
also be graphically represented using a nested cluster 
diagram. 

Hierarchical clustering 



 

Hierarchical clustering 



• The basic agglomerative hierarchical clustering 
algorithm is summarized as follows 
 Compute the proximity matrix. 
 Repeat 

 Merge the closest two clusters 
 Update the proximity matrix to reflect the proximity between the 

new cluster and the original clusters. 

 Until only one cluster remains 

Hierarchical clustering 



• Different definitions of cluster proximity leads to 
different versions of hierarchical clustering. 

• These versions include 
 Single link or MIN 
 Complete link or MAX 
 Group average 
 Ward’s method 

Hierarchical clustering 



• We consider the following set of data points. 
• The Euclidean distance matrix for these data points is 

shown in the following slide. 

Hierarchical clustering 



 

Hierarchical clustering 



• We now consider the single link or MIN version of 
hierarchical clustering. 

• In this case, the proximity of two clusters is defined 
as the minimum of the distance between any two 
points in the two different clusters. 

• This technique is good at handling non-elliptical 
shapes. 

• However, it is sensitive to noise and outliers. 

Single link 



• The following figure shows the result of applying 
single link technique to our example data. 

• The left figure shows the nested clusters as a 
sequence of nested ellipses. 

• The numbers associated with the ellipses indicate 
the order of the clustering. 

• The right figure shows the same information in the 
form of a dendrogram. 

• The height at which two clusters are merged in the 
dendrogram reflects the distance of the two clusters. 

Single link 



 

Single link 



Single link 

• For example, we see that the distance between 
points 3 and 6 is 0.11. 

• That is the height at which they are joined into one 
cluster in the dendrogram. 

• As another example, the distance between clusters 
{3,6} and {2,5} is  
 

𝑑 3,6 , 2,5 = min (𝑑 3,2 , 𝑑 6,2 , 𝑑 3,5 , 𝑑 6,5 ) 
                            = min 0.15,0.25,0.28,0.39  
                            = 0.15 



• We now consider the complete link or MAX version 
of hierarchical clustering. 

• In this case, the proximity of two clusters is defined 
as the maximum of the distance between any two 
points in the two different clusters. 

• Complete link is less susceptible to noise and 
outliers. 

• However, it tends to produce clusters with globular 
shapes. 

Complete link 



• The following figure shows the results of applying the 
complete link approach to our sample data points. 

• As with single link, points 3 and 6 are merged first. 
• However, {3,6} is merged with {4}, instead of {2,5} or 

{1}. 

Complete link 



 

Complete link 



Complete link 

• This can be explained by the following calculations 
 

𝑑 3,6 , 4 = max 𝑑 3,4 , 𝑑 6,4  
                        = max 0.15,0.22  
                        = 0.22 
𝑑 3,6 , 2,5 = max 𝑑 3,2 , 𝑑 6,2 , 𝑑 3,5 , 𝑑 6,5  
                            = max 0.15,0.25,0.28,0.39  
                            = 0.39 
𝑑 3,6 , 1 = max 𝑑 3,1 , 𝑑 6,1  
                        = max 0.22,0.23  
                        = 0.23 

 
 



• We now consider the group average version of 
hierarchical clustering. 

• In this case, the proximity of two clusters is defined 
as the average pairwise proximity among all pairs of 
points in the different clusters. 

• This is an intermediate approach between the single 
and complete link approaches. 

Group average 



Group average 

• We consider two clusters Ci and Cj, which are of 
sizes mi and mj respectively. 

• The distance between the two clusters can be 
expressed by the following equation 
 

𝑑 𝐶𝑖, 𝐶𝑗 =
∑ 𝑑 𝐱, 𝐲𝐱∈𝐶𝑖,𝐲∈𝐶𝑗

𝑚𝑖𝑚𝑗
 



Group average 

• The following figure shows the results of applying the 
group average to our sample data. 

• The distance between some of the clusters are calculated 
as follows: 

𝑑 3,6,4 , 1 =
0.22 + 0.37 + 0.23

3 × 1 = 0.27 
 

𝑑 2,5 , 1 =
0.24 + 0.34

2 × 1 = 0.29 
 

𝑑 3,6,4 , 2,5 =
0.15 + 0.28 + 0.25 + 0.39 + 0.20 + 0.29

3 × 2 = 0.26 

 



 

Group average 



• We observe that d({3,6,4},{2,5}) is smaller than 
d({3,6,4},{1}) and d({2,5},{1}). 

• As a result, {3,6,4} and {2,5} are merged at the fourth 
stage. 

Group average 



• We now consider Ward’s method for hierarchical 
clustering. 

• In this case, the proximity between two clusters is 
defined as the increase in the sum of the squared 
error that results when they are merged. 

• Thus, this method uses the same objective function 
as k-means clustering. 

Ward’s method 



• The following figure shows the results of applying 
Ward’s method to our sample data. 

• The clustering that is produced is different from 
those produced by single link, complete link and 
group average. 

Ward’s method 



 

Ward’s method 



• Hierarchical clustering is effective when the 
underlying application requires the creation of a 
multi-level structure. 

• However, they are expensive in terms of their 
computational and storage requirements. 

• In addition, once a decision is made to merge two 
clusters, it cannot be undone at a later time. 

Key issues 
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